Abstract

Nature provides inspiration for liquid-repellant and low-adhesive surfaces, such as the lotus leaf and pitcher plant. While water-repellency is frequently found in nature, oil-repellency and surfactant-repellency are uncommon to nonexistent. To obtain oil- and surfactant-repellency, hierarchical, re-entrant, bioinspired surface structures along with low surface energy materials are needed. This overview presents wetting literature, common liquids and their composition, and fabrication techniques for superliquiphobic surfaces with repellency toward water, oil, and surfactant-containing liquids. Four techniques for creating such surfaces are explained in detail: nanoparticle/binder, layer-by-layer, nanoparticle-encapsulation, and liquid-impregnation. Static contact and tilt angles with water and hexadecane liquids, morphology, wear, transparency, self-cleaning, anti-smudge, and oil–water separation data are examined to compare the techniques. Data for these techniques are presented showing evidence of re-entrant geometry and the ability for these surfaces to repel surfactant-containing liquids such as shampoo and laundry detergent. The data will provide guidance in implementing superliquiphobic surfaces for self-cleaning, anti-smudge, antifouling, and low-adhesion properties for various applications including plastic packaging and biomedical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.