Abstract

Sol–gel-derived bioactive glasses (BGs) have been developed for bone tissue regeneration. To develop more reliable bone tissue repair systems, it is necessary to control the morphology and surface textures of bioactive glasses. In this study, we prepared bioactive glasses by sol–gel technology using hydrochloride acid, lactic acid, citric acid and acetic acid as hydrolysis catalysts. We studied effects of acids on the morphology and surface textures, apatite-forming bioactivity and cellular response (cellular attachment and proliferation) of BGs. Results showed that the surface morphology, structure, apatite-forming bioactivity and cellular response of BG particles can be controlled by changing acid species. The hydrochloric acid-derived bioactive glass (HBG) and the acetic acid-derived bioactive glass (ABG) present high surface areas and fast apatite-forming rates. Lactic acid- and citric acid-derived bioactive glasses (LBG, CBG) exhibited nanoscale surface morphology, relatively low surface areas and comparable apatite-forming bioactivity. The results of human marrow mesenchymal stem cell (HMSC) culture exhibited that LBG and CBG have an enhanced effect on the cell proliferation, as compared to HBG, ABG and tissue culture plate. This study suggests that sol–gel bioactive glasses with proper surface textures and apatite-forming rate can affect preliminary cellular proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.