Abstract
The water-based foam stabilized by the natural surfactant applied in the fabrication of porous materials has attracted extensive attention, as the advantages of cleanness, convenience and low cost. Particularly, the development of a green preparation method has became the main research focus and frontier. In this work, a green liquid foam with high stability was prepared by synergistic stabilization of natural plant astragalus membranaceus (AMS) and attapulgite (APT), and then a novel porous material with sufficient hierarchical pore structure was templated from the foam via a simple free radical polymerization of acrylamide (AM). The characterization results revealed that the amphiphilic molecules from AMS adsorbed onto the water-air interface and formed a protective shell to prevent the bubble breakup, and APT gathered in the plateau border and formed a three-dimensional network structure, which greatly slowed down the drainage rate. The porous material polyacrylamide/astragalus membranaceus/attapulgite (PAM/AMS/APT) showed the excellent adsorption performance for cationic dyes of Methyl Violet (MV) and Methylene Blue (MB) in water, and the maximum adsorption capacity could reach to 709.13 and 703.30 mg/g, respectively. Furthermore, the polymer material enabled to regenerate and cycle via a convenient calcination process, and the adsorption capacity was still higher than 200 mg/g after five cycles. In short, this research provided a new idea for the green preparation of porous materials and the treatment of water pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.