Abstract

An organic–inorganic functionalized nano-filler (CNC–TiO2), was prepared by loading titanium dioxide nanoparticles (TiO2) onto the crystalline nanocellulose (CNC) surface by using methacrylatesilane as cross-link agent in order to enhance compatibility between nanofiller and matrix (PMMA). Nanocomposite films (PMMA/CNC–TiO2) were prepared by free radical copolymerization of various amount (0–5 wt%) of functionalized nanofiller (CNC–TiO2) with methylmethacrylate (MMA) as main monomer, followed by solvent casting technique. The films were characterized using TEM, FTIR, FEG-SEM, and XRD, TGA, and UV–VIS spectroscopy. The results of TEM and FTIR confirmed the modification of CNC with TiO2 and the interaction between the CNC–TiO2 nanofiller and PMMA. FEG-SEM results showed a uniform dispersion of the nanofiller in the PMMA matrix whereas EDX confirmed the presence of TiO2 in the nanocomposite films. The effect of the nanofiller on the mechanical properties of PMMA was also investigated and the results showed significant improvement in tensile and modulus strengths with increasing amounts of nanofiller. In addition, TGA results demonstrated remarkable improvements in the thermal properties of the PMMA/CNC–TiO2 nanocomposite films UV results showed a response to UV absorbance due to incorporation of TiO2. Nanocomposite films can be beneficial for a variety of applications such as coating materials for windows, shelters, glazing, optical filters, and as hard packaging with UV-blocking properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call