Abstract

Zinc oxide (ZnO) nanoparticles (NPs, ~5 nm) were first synthesized by a simple wet chemical method. A mixture of poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) was used as the photoactive layer, and an inverted solar cell with a structure of ITO/ZnO NPs/P3HT:PCBM/MoO3/Ag was fabricated. Its performance and stability in the ambient atmosphere were investigated in detail. The results showed that the fabricated solar cell under 100 mW/cm2 AM1.5 illumination exhibited a power conversion efficiency (PCE) of 0.28 %. In addition, illumination intensity had significant effect on open circuit voltage (V oc), short circuit current (J sc), fill factor (FF), and PCE of the fabricated solar cell. The dark storability (darkness, room temperature, and 50–60 % relative humidity) was shown to exceed 4,416 h without notable loss in PCE. The fabricated solar cell with excellent long-term stability was achieved in an ambient atmosphere; also, the stable mechanism of the solar cell in the ambient atmosphere was illuminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.