Abstract
X 2–Y 2SiO 5:A (A=Eu 3+, Tb 3+, Ce 3+) phosphor films and their patterning were fabricated by a sol–gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 °C with X 1–Y 2SiO 5, which transformed completely to X 2–Y 2SiO 5 at 1250 °C. Patterned thin films with different band widths (5 μm spaced by 5 μm and 16 μm spaced by 24 μm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpatterned phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 nm. The doped rare earth ions (A) showed their characteristic emissions in X 2–Y 2SiO 5 phosphor films, i.e., 5D 0– 7F J ( J=0,1,2,3,4) for Eu 3+, 5D 3, 4– 7F J ( J=6,5,4,3) for Tb 3+ and 5d ( 2D)–4f ( 2F 2/5, 2/7) for Ce 3+, respectively. The optimum doping concentrations for Eu 3+, Tb 3+ were determined to be 13 and 8 mol% of Y 3+ in X 2–Y 2SiO 5 films, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.