Abstract
ObjectivesPaliperidone is a BCS class II drug with low solubility and high permeability. It has 28% absolute oral bioavailability and an elimination half-life of 23 h. An osmotic push–pull trilayer tablet currently available on the market has achieved controlled release of a low dose over an extended time period, while avoiding the need for a loading dose. However, this trilayer tablet has several disadvantages, such as complicated processing, high production costs and difficulty in achieving uniformity of the contents. Thus, the objective of this study was to overcome the above difficulties associated with paliperidone and to formulate a bilayer tablet with a similar drug profile to that of the reference listed drug Invega®. MethodsThe bilayer tablets were prepared by optimization of the core and semi-permeable membrane. Effects of the curing time, and the size and number of orifices on the prepared tablets’ dissolution profile were analyzed. Two different grades of polyethylene oxide were used in the core and push layer as pore formers. ResultsThe weight variation, friability and hardness values of the prepared tablets were well within compendium limits. The optimized bilayer parameters for the prepared tablets were curing time, 5 h; seal coat, 7% w/w; ER coat, 13% w/w; orifice size, 0.6 mm; and orifice number, 2. Further tablet formulation resulted in an F2 value of 75.67, indicating a dissolution profile similar to that of Invega®. ConclusionBi-layer tablets of paliperidone overcoming the drawbacks of the marketed formulation were successfully prepared, and offer advantages such as a simpler preparation process, cost effectiveness and faster preparation of the tablet core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.