Abstract
AbstractSemitransparent inverted organic photodiodes are fabricated with a Baytron PH500 ethylene‐glycol layer/silver grid as the top electrode. Reasonable performances are obtained under both rear‐ and front‐side illumination and efficiencies up to 2% are achieved. Some light is shed on visual prospects through optical simulations for a semitransparent device of poly(3‐hexylthiophene) (P3HT) and the C60 derivative 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl[6,6]C71 (PC70BM) in the inverted structure. These calculations allow the maximum efficiency achievable to be predicted for semitransparent cells based on P3HT:PC70BM versus the transparency perception for a human eye. The simulations suggest that low‐bandgap materials such as poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) have a better potential for semitransparent devices. In addition, the color range recognized by the human eye is predicted by the optical simulation for some semitransparent devices including different active layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.