Abstract

Abstract. Zinc oxide nanorods (ZnO-NRs) as a photoelectrochemical water splitting electrode have been fabricated by the seed-assisted hydrothermal process. Initially, ZnO-seed thin film was deposited on indium doped tin oxide (ITO) via DC magnetron sputtering system. Period to fabricate ZnO-NRs, the precursor concentration of zinc nitrate (Zn(NO3)2) and hexamethylenetetramine (HMTA) were precisely controlled during 10 – 50 mM, meanwhile the ratio was constantly kept at 1:1. The crystallography and surface morphology of the fabricated ZnO-NRs were investigated by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The XRD patterns perform wurtzite ZnO crystal structure of with the prefered orientation in (002) and (101) plane. According to FE-SEM photograph, growth rate, density and diameter of the fabricated ZnO-NRs electrode significantly increase, with the increasing of the precursor concentration. This precursor concentration provides a crucial role on the feature of ZnO-NRs for photoelectrochemical water splitting electrode. Finally, the photoelectrochemical water splitting performance was examined and provided that the precursor concentration became close to 30 mM in 1 M Na2SO4 exhibited the highest photocurrent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.