Abstract

Aim In this investigation, Zinc-silicon carbide (Zn-SiC) materials were fabricated by a simple approach by using Zn nanoparticles (Zn-NPs) loaded on silicon carbide (SiC) with enhanced antibacterial and healing activity. Methods Zn-NPs loaded on SiC fabricated by the DIY laser melting technique. The TEM and Zeta-sizer confirmed the morphology and size of the nanoparticles. The characterization was done using Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction (XRD), Thermogravimetric analysis (TGA). Further, the fabricated nanoparticles were evaluated for their mechanical properties and biocompatibility under storage conditions. In-vivo wound healing was measured by observing a percentage reduction in the wound. Results Zn-SiC NPs have 54.6 ± 5.25 nm mean particle size, -15.9 ± 2.35 mV zeta potential with 0.187 ± 0.05 polydispersity index (PD1). The nanoparticles showed good biocompatibility and in-vivo wound healing properties. Conclusions These results strongly support the possibility of using these Zn particles loaded on SiC NPs as a promising wound healing agent after cesarean section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call