Abstract

Highly active Fe3O4/GO/Au composite nanomaterial was fabricated as a substrate of surface-enhanced Raman spectroscopy (SERS) and applied for pesticide residue detection. The three-layer multifunctional Fe3O4/GO/Au nanoparticles (NPs) were designed by facile method, with high hotspots, and were characterized by various techniques, including ultraviolet spectrophotometry (UV), X-ray diffraction (XRD), infrared absorption spectrometer (IR), and transmission electron microscopy (TEM). The performance of Fe3O4/GO/Au was evaluated by Raman spectroscopy with R6G as a probe molecule to verify its enhancement effect. It exhibited a strong Raman signal with 10-6M of R6G. Furthermore, the presence of Fe3O4/GO/Au nanohybrid enabled the SERS-based method to detect mancozeb and showed an excellent linear relationship in the range of 0.25-25 ppm, with a low limit of detection (0.077 ppm), satisfactory EF, stability, and repeatability. In addition, the mechanism of SERS enhancement with electromagnetic mechanism (EM) and chemical mechanism (CM) was discussed in detail. Therefore, the proposed SERS approach holds promise as an auxiliary technique for screening contaminated agricultural products, environmental sample, and food in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.