Abstract
In order to improve laser transmission efficiency at 1053 nm and 527 nm, a potassium deuterium phosphate (DKDP) crystal (a key component of high-power laser systems) needs a bi-layer antireflection coating system on its incident surface. UV-curable polysiloxane coatings with a refractive index varying from 1.500 to 1.485 were prepared through the polycondensation of a methacryloxy propyl trimethoxylsilane (MPS) monomer with a controllable degree of hydrolysis. Additionally, the influence rule of the coating structure on the refractive index was intensively studied, and the primary factors that dominate the hydrolysis process were discussed. Further refractive index adjustment was achieved using only a small amount of dopant based on the polysiloxane coating with refractive index of 1.485, allowing for high antireflection of the bi-layer coating system at desired wavelengths to be achieved. In addition, high laser damage resistance and remarkable mechanical properties of the coating were simultaneously realized through the incorporation of a minor quantity of dopants, which benefited from the successful modulation of the intrinsic refractive index of the polysiloxane coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.