Abstract
Abstract In this study, the uniform alginate-agarose microcapsules entrapping FeSO4 were successfully fabricated by premix membrane emulsification technique combined with ionic crosslinking solidification method. It was the first time to employ four phase emulsions system of W1/O1/W2/O2 for encapsulating FeSO4 into alginate-agarose microcapsules. We systematically investigated how the preparation parameters including type of oil phase and emulsifier, concentrations of alginate and agarose and volume ratios between oil and water phase influenced the stability of emulsions, the morphology and size distributions of microcapsules and loading efficiency of FeSO4. We found that the stability of emulsion was improved with the increase of viscosity and density of outer oil phase (O2), the concentration of emulsifier as well as the volume ratio between inner water phase and inner oil phase (W1/O1) within a certain range. Besides, loading capacity of Fe2+ in alginate/agarose microcapsules presented an increase tendency with the decrease of the volume ratio between external water phase (W2) and primary emulsion [W2/(O1/W1) (v/v)], and also decreased with the concentration of W2. Furthermore, Young’s modulus grew significantly with the increase of agarose/alginate (w/w). According to the above investigation, the optimal preparation parameters were obtained, and the microcapsules prepared with these parameters showed spherical and smooth morphology, average size of 2 μm in diameter, narrow size distributions and higher FeSO4 loading efficiency of 13.7 mg/g. The microcapsules could be applied for the human body iron supplement, and the encapsulation could well shield bad taste of FeSO4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.