Abstract

Two-dimensional (2D) metal-organic frameworks (MOF) nanosheets have emerged as novel membrane materials for gas separation. However, the development of ultrathin MOF membranes with tunable separation performances is still a challenge. Herein, we developed a facile GO-assisted restacking method to fabricate defect-free membranes with monolayer Zr-BTB nanosheets. Obtained ultrathin membranes ranging from 130 nm to 320 nm show tunable separation performances and exceed the 2008 Robeson upper bound by changing the amount of nanolayers in vertical stacking direction. Furthermore, a heating filtration method was used to change the restacking process of nanosheets in the horizontal direction. As a result, H2 /CO2 selectivity can be enhanced by two times with the same membrane thickness (130 nm) and H2 permeance is almost maintained to be 7.0×10-7 mol m-2 s-1 pa-1 . This method may provide a possible way to efficiently tune the gas separation performances of MOF membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call