Abstract

We report the controlled growth of ultralong single-wall carbon nanotube (SWNT) arrays using an improved chemical vapor deposition strategy. Using ethanol or methane as the feed gas, monodispersed Fe-Mo as the catalyst, and a superaligned carbon nanotube (CNT) film as the catalyst supporting frame, ultralong CNTs over 18.5 cm long were grown on Si substrates. The growth rate of the CNTs was more than 40 mum/s. No catalyst-related residual material was found on the substrates due to the use of a CNT film as the catalyst supporting frame, facilitating any subsequent fabrication of SWNT-based devices. Electrical transport measurements indicated that the electrical characteristics along a single ultralong SWNT were uniform. We also found that maintaining a spatially homogeneous temperature during the growth process was a critical factor for obtaining constant electrical characteristics along the length of the ultralong SWNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.