Abstract

The differential speed accumulative roll bonding (DSARB) process was attempted to strengthen 1100 aluminum sheet via grain refinement. The roll peripheral speed of one roll was 2.0 m/min and that of another roll was 3.6 m/min. The roll speed ratio was kept at 1.8. The accumulative roll bonding was conducted up to 6 cycles at ambient temperature without lubrication. For comparison, the conventional accumulative roll bonding (CARB) process was conducted with a rolling speed of 3.0 m/min. The grains developed by the DSARB process were more equiaxed than those produced by the CARB. Tensile strength of the DSARB processed sample was higher than that of the CARB processed sample at the same plane strain compressive strain. The elongation was not affected significantly by the number of ARB cycles. The DSARB process was more effective for grain refinement and strengthening than the CARB process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.