Abstract

The combination of solution self-assembly, which enables primary morphological control, and solid self-assembly, which enables the creation of novel properties, can lead to the formation of new functional materials that cannot be obtained using either technique alone. Herein, we report a cooperative solution/solid self-assembly strategy to fabricate novel two-dimensional (2D) platelets. Precursor 2D platelets with preorganized packing structure, shape, and size are formed via the living self-assembly of a donor-acceptor fluorophore and volatile coformer (i.e., propanol) in solution phase. After high-temperature annealing, propanol is released from the precursor platelets, and new continuous intermolecular hydrogen bonds are formed. The new 2D platelets formed retain the controllable morphologies originally defined by the solution phase living self-assembly but exhibit remarkable heat-resistant luminescence up to 200 °C and high two-photon absorption cross sections (i.e., >19,000 GM at 760 nm laser excitation).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.