Abstract

Light on optoelectronic devices and solar panels is lost both through reflection at the air/glass interface of the cover glass and through scattering or absorption by accumulated dust, dirt and ice. Therefore, the transparent superhydrophobic thin films can resolve these problems. In this research, silica-silica nanotube nanocomposite thin films were applied on glass substrates by a sol–gel method. To modify the nanocomposite thin film, the samples were immersed in a PFTS solution. The morphology, chemical composition and transparency of the thin films were investigated using FE-SEM, FTIR and UV–VIS–NIR spectrophotometer methods. The water and oil contact angles on the thin film surfaces was measured using a contact angle analyzer. The self-cleaning and stability of the thin films were investigated. The water contact angle results indicated that silica nanotube/PFTS thin films increased water contact angle of the glass substrate from 16° to 152°. The transmittance of the silica-silica nanotube/PFTS coated glass substrate was measured as 87% at 550 nm. The icing test results showed that superhydrophobic coating increased icing time during ice formation on the glass surface from 102 to 874 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call