Abstract
We demonstrated the feasibility to fabricate two-terminal non-volatile-memory (NVM) devices using pulsed radio frequency (rf) plasma polymerization and simple solution route. The two-terminal NVM devices were fabricated based on a metal-insulator-metal structure consisting of graphene quantum dots (GQDs) embedded in hexamethyldisiloxane dielectric layers. The charge trapping layer, GQDs and the top contacts were formed by spin coating and spray coating methods. Whereas, the dielectric layers were deposited using pulsed rf plasma polymerization. The current-voltage curves showed a bistable current behavior with the presence of hysteresis window. The fabricated NVM memory devices were reprogrammable when the endurance test was performed and stable up to 1×104s cycles with a distinct ON/OFF ratio of 104. Based on the obtained I-V characteristics, Schottky emission, Poole-Frenkel emission, trapped-charge limited-current and space-charge-limited current were proposed as the dominant conduction mechanisms for the fabricated NVM devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.