Abstract
This paper aims to fabricate functionally graded dental crown using a multi-slurry tape casting additive manufacturing technology. The different luminescence of the dental crown was obtained with different composition of zirconia and yttria. Zirconia with tunable mechanical properties and translucency are obtained by adding 3, 3.5, 4, 4.5, and 5 mol% of yttrium oxide to zirconia powder. After obtaining the printable slurry with maximum solid loading, the green bodies are prepared using the in-house built high-speed multi-ceramic tape casting technology. They are later sintered with two-stage sintering method. After the successful fabrication, the mechanical properties and translucency of the specimens were evaluated with Vickers hardness, three-point bending and translucency parameter tests. Finally, an FGM tooth crown with five photocurable slurries is proposed to demonstrate the translucent gradient effect of sintered part. The solid loading of 80% zirconia and 20% resin delivered samples without any surface cracks. The shrinkage ratio analysis showed that the sintered sample dimension was reduced by 20%, 20%, and 23% along X, Y, and Z directions. The samples fabricated with 3% yttrium oxide to zirconia delivered excellent hardness (1687 HV) and flexural strength (650.6 MPa). However, the relative luminescence increased with increasing the yttrium oxide for 3–5 mol%. With the optimized process parameters, the proposed dental crown is fabricated and analyzed for their shrinkage ratio, mechanical, and translucency properties. The study proposes the potential of fabricating customized dental crown with gradient translucent appearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.