Abstract
A standard set of interpenetrating polymeric networks (IPNs) has been contrived using an elastomer-styrene butadiene rubber and a thermoplastic poly (methyl methacrylate) through sequential polymerization protocol. This low-cost material can be hopefully engaged as a toughened plastic with co-continuous morphology. Different morphological protocols including Raman imaging are effectively utilized to envisage the effect of blend ratio in IPN fabrication. The different mechanical properties of IPNs revealed that the cross-linking in phases have their own impact. Thermogravimetric analysis is used as an efficient tool to prove the extra thermal stability of IPNs. Of seven different composites theoretical models, the Davies model showed better fit to the experimental data. The etiquette of characterization adopted in this work including mechanical, morphological, and thermal protocols and their correlation with theoretical predictions can definitely be act as a platform for the synthesis of low-cost toughened plastic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.