Abstract

Fabrication of TiO2 hollow microspheres (TiO2-HMSs) with complex structure is of great importance but remains a great challenge. In this paper, hierarchical TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) were prepared by hydrothermal treatment of TiO2-HMSs precursor in NaOH solution and followed by acid wash and calcination. The effect of hydrothermal reaction time on the structure and photoelectric conversion performances of TiO2-HMSs-NSs film solar cells was systematically studied. It was found that both the BET surface area and photocatalytic activity of TiO2-HMSs-NSs, in photocatalytic degradation of Brilliant Red X-3B dye, are positively related to the hydrothermal reaction time (from 0 to 3h). The BET specific area of TiO2-HMSs-NSs steady increase from 21m2g−1 of TiO2-HMSs precursor (H0) to 184m2g−1 (H3), improved by a factor of 8.76, while the photocatalytic activity of H3 increased 7.50 times when compared with that of H0 sample. The highest photoelectric conversion efficiency (5.97%) of TiO2-HMSs-NSs film solar cell was obtained for H2 sample, exceeding that of TiO2-HMSs precursor (H0) based film solar cell (3.75%) with the same film thickness by a factor of 1.6. The improved photoelectric conversion efficiency of TiO2-HMSs-NSs based solar cell was attributed to the unique hierarchical hollow structure, which results in a good contact between TiO2 and FTO glass, enlarged pore volume, enhanced adsorption to sensitizer and improved light scattering ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.