Abstract

A solar cell is a device that can convert solar energy into electrical energy. The third generation of solar cells is Dye-Sensitized Solar Cells (DSSC). Typically, DSSC consists of a working electrode (semiconductive metal oxide), a photosensitizer, an electrolyte, and a counter electrode (platinum or carbon electrode). Among the components, a working electrode is one of the crucial components to control the electrochemical performance. This study examines variations in Ag composition in TiO2-Ag composites against efficiency using two materials and fabrication methods. First, using the solid-state method, TiO2-Ag composites were fabricated from Ag paste and TiO2 paste. The highest efficiency results were achieved at TiO2 N-RT + Ag 1%. The efficiency increased from 1.05% to 1.51% compared to TiO2 without Ag doping. Second, using the solvothermal method, TiO2-Ag composites were fabricated from AgNO3 and TiO2 particles. The highest efficiency results were obtained at TiO2 NP + Ag 0.75%. The efficiency increased from 0.82% to 1.07% compared to TiO2 without Ag doping. Furthermore, the material with the best efficiency was characterized using FTIR, XRD, and SEM to identify the material’s functional groups, phases, and morphology, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call