Abstract
This study explores the electrochemical reduction of carbon dioxide (CO2) using tin (Sn) and zinc (Zn) catalyst-loaded gas diffusion electrodes (GDEs). The research explores the influence of electrolytic potential and catalyst loading on the efficiency of CO2 conversion to valuable chemicals, specifically formic acid and carbon monoxide. The best Sn loading for Sn-loaded GDEs, according to the morphological study, is 7 mg.cm-2, which results in higher current density (0.33 mA.cm-2) and current efficiency (36%). An electrolytic potential of -1.3 V Vs. Ag/AgCl is identified as optimal for Sn GDEs, offering a balance between high current efficiency (35%) and controlled current density. For Zn-loaded GDEs, an optimal loading of 5 mg.cm²- yields the highest current efficiency of 19.4% and a peak current density of 0.28 mA.cm²- at an electrolytic potential of -1.55 V Vs. Ag/AgCl, in addition to highlighting the crucial role that catalyst loading and electrolytic potential play in enhancing CO2 reduction efficiency, this research offers insightful information for environmentally friendly CO2 conversion technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.