Abstract

A morphologically controlled three-dimensional (3D) cell construct composed of only cells and having no scaffold material might be a valuable biologic material for tissue engineering applications, as the scaffold materials can cause delay of tissue regeneration in some conditions. To obtain such a 3D cell construct, a 3D thermoresponsive hydrogel (poly-N-isopropylacrylamide) was prepared as a mold material that changes its volume depending on the temperature. Three-dimensional osteoblast cell constructs with a variety of morphologies as well as a monolayered cell sheet were obtained by decreasing the surrounding temperature of the hydrogel designed with a predefined shape and formed by curing in a polymer mold manufactured via 3D printing. The cell sheet or 3D cell constructs detachment resulted from a simple change in the gel volume, not by the surface chemistry of the gel, because the surface hydrophilicity of the gel was maintained over a wide temperature range. These 2D/3D cell constructs have numbers of exciting applications such as cell carriers for tissue regeneration or as model tissues for the biological study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call