Abstract
This paper reports a method of fabricating very thick (10–100 µm) silicon dioxide layers for thermal isolation without the need for very long deposition or oxidation. Deep reactive ion etching (DRIE) is used to create high-aspect-ratio trenches and silicon pillars, which are then oxidized and/or refilled with LPCVD oxide to create oxide layers as thick as the DRIE allows. Stiffeners are used to provide support for the pillars during oxidation. Thermal tests show that such thick silicon dioxide layers can effectively thermally isolate heated structures from neighboring structures within a distance of hundreds of microns. The thermal conductivity of the thick SiO2 is measured to be ∼1.1 W (m K)−1. Such SiO2 diaphragms of thickness 50–60 µm can sustain an extrinsic shear stress up to 3–5 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.