Abstract

Boron nitride (BN) particles fabricated with different surface treatments were used to prepare thermally conductive polymer composites by epoxy wetting. The polar functionality present on the BN particles allowed the permeation of the epoxy resin because of a secondary interaction, which allowed the fabrication of a composite containing high filler concentration. The different cohesive energy densities of the synthesized material due to a functional-group-induced surface treatment effect on surface free energy and wettability determined the thermal and mechanical properties of the polymer. The results indicate that surface-curing agents interrupt the interaction between the filler and matrix, and do not always enhance thermal conductivity. Moreover, the composites showed maximum thermal conductivity at 30wt% epoxy loading when the fixed-pore volume fraction reached in the filtrated BN film. The measured storage modulus was also enhanced by surface treatment because of the sufficient interface produced and interaction between the large amount of the filler and epoxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.