Abstract
SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> nanofibers have been fabricated from a suitable inorganic-organic composite solution via a simple electrospinning method and followed by calcination treatment of the electrospun polymer/inorganic composite fibers. The effect of voltage, tip-to-collector distance and calcining temperature on the morphology and crystal structure of nanofibres was investigated by scanning electron microscope (SEM), X-ray photoelectron spectra (XPS) and X-ray diffraction (XRD). The diameter and diameter distribution of nanofibers can be controlled by controlling the electrospinning parameters and the more ideal diameter is 200-350nm. The formation of phase identified by XRD indicated the existence of tetragonal rutile tin oxide crystals and amorphous alumina. This paper provides a new method for the preparation of the SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> catalysts for NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.