Abstract

In this research, the non-thermal glow discharge plasma process was implemented to modify the surface of natural clinoptilolite zeolite before incorporation into the polyethersulfone (PES) membrane. The influence of plasma gas pressure variation on the fouling resistance and separation performance of the prepared membranes was studied. Fourier transform infrared, field emission scanning electron microscopy, and X-ray diffraction analyses of the unmodified and modified clinoptilolites revealed the Si-OH-Al bond's development during plasma treatment and the change in surface characteristics. In terms of performance, increasing the plasma gas pressure during clinoptilolite treatment resulted in the twofold enhancement of water flux from 91.2 L/m2 h of bare PES to 188 L/m2 h of the membrane containing plasma-treated clinoptilolite at 1.0 Torr pressure. Meanwhile, the antifouling behavior of membranes was improved by introducing more hydrophilic functional groups derived from the plasma treatment process. Additionally, the enhanced dye separation of membranes was indicated by the separation of 99 and 94% of reactive green 19 and reactive red 195, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.