Abstract

A surface acoustic wave (SAW) device has been reported as a micro fluid device such as a pump of a water droplet so far (Renaudin et al. in μTAS, pp 599–601, 2004, 1:551–553, 2005; Sritharan et al. in Appl Phys Lett 88:054102, 2006; Wixforth in Anal Bioanal Chem 379:982–991, 2004; Yamamoto et al. in μTAS, pp 1072–1074, 2005). The SAW device is an interdigital transducer (IDT) fabricated on the piezoelectric substrate only. IDTs are advantageous in terms of integration, miniaturization, free position setting on the substrate and simple fabrication process because of their simple structure. Therefore, the SAW device is easy to apply to integrated chemical system such as lab-on-a-chip. The SAW drives the liquid homogenously by the transmission of surface vibrations of the substrate. Thus, both ends of the channel for pressure loading are not necessary to pump the liquid by using the SAW. The SAW can pump the liquid in both of a closed channel and an opened channel, although continuous flow pumping using an external pump is difficult for no loading pressure in the closed fluid channel. In this paper, we proposed and fabricated the micro fluid devices combined cyclical fluid channel and SAW actuator for liquid pumping. This device is fabricated on a piezoelectric substrate (LiNbO3) with UV photolithography and wet etching. Structure material of cyclical fluid channel is epoxy photoresist SU-8 100. Then, it is demonstrated to continuous flow pumping and reciprocal flow pumping in the channel. As a result of optimization of a SAW pump’s structural parameter, 32.5, 71.3 and 108.0 mm/s are achieved in the 500, 1,000 and 2,000 μm channel width as a maximum flow velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call