Abstract
The aim of the present work focuses on a newly developed ether-linked N, N-tetraglycidyl diamino-diphenyl ether (TGDDE) epoxy resin incorporated with the amine functionalized zinc oxide for the enhancement of the mechanical and thermal properties. TGDDE was synthesized using the starting material of 4,4-diamino-diphenyl ether (DDE) with epichlorohydrin (EPC). The synthesized TGDDE epoxy resin was characterized using FT-IR, 1H NMR and 13C NMR spectral analyses. The amine-functionalized zinc oxide (F–ZnO) was synthesized via the condensation method using 3-aminopropyl-triethoxysilane (APTES) and its preliminary structure was confirmed by FT-IR. The various weight percentages of F–ZnO (0.5, 1, and 2 wt%) were reinforced with TGDDE epoxy resin and cured with 4,4′-diaminodiphenylmethane (DDM). The mechanical and thermal behavior of the TGDDE epoxy matrix and nano-composites were analyzed by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). Consequently, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used for the prediction of the structural and surface morphology of the synthesized epoxy nanocomposites. The mechanical and thermal properties of the synthesized epoxy nanocomposites were enhanced to a greater extent by the inclusion of F–ZnO. The highest values were achieved in the mechanical properties, thermal stability and DMA analysis at 1 wt% addition of F–ZnO nanoparticles. The result of the study clearly shows that 1 wt% of F-ZnO with TGDDE epoxy resin can be used in various high-performance applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.