Abstract

A thermal barrier coating (TBC) system for rocket chambers made of Cu-based high strength alloys has been developed in a pilot project in line with EB-PVD (electron-beam physical vapor deposition) technology aiming at TBC application on Cu-based walls of real rocket combustion chambers. The TBC system consists of a metallic bond coating compatible with Cu-based material and an yttria partially stabilized zirconia TBC. The TBC overlayer is a distinctive ceramic structure designed for an exceptionally low Young’s modulus to withstand the extreme mismatch stresses between the internally LN-cooled high thermal expansion Cu metal base and the low thermal expansion hot ceramic shell. The TBC system has been qualified under close-to-service conditions on cylindrical LH2-cooled combustion chamber segments, where they have performed superior.As EB-PVD technology is a line-of-sight process that is rather able to coat internal cavities, a transient liquid phase (TLP) joining technique for fully coated parts has been developed, that allows to assemble complete components out of vapor-accessible fully coated parts. It is capable, e.g. to incorporate sinuous cooling passages in the throat areas of combustion chambers, and/or to assemble oversized parts out of smaller components by maintaining parent metal properties. A manufacturing process is outlined for making internal TBC armored combustion chambers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.