Abstract
Superhydrophobic surfaces have attracted significant attention in the applied science community. This paper presents three different methods for fabricating superhydrophobic surfaces, which can be applied in liquid light guides with the total internal reflection effect playing a central role. The selective bi-polymer etching only produces a hydrophobic porous poly(methyl methacrylate) surface but is simple and versatile for use on an arbitrary surface. In metal-assisted chemical etching, wet etching of a silver layer on a silicon sample creates porous silicon with superhydrophobicity, characterized by a water contact angle of 160°. The metal-assisted chemical etching method modified with the presence of polystyrene nanoparticles further improved the water contact angle to 164° by creating a nanopillar silicon structure. The metal-assisted chemical etching methods are more complicated but can produce superhydrophobic surfaces with very high water contact angles. These results show that superhydrophobic surfaces fabricated by methods in this study can be used for total internal reflection effect at the interface between water with huge potential applications in liquid light guides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.