Abstract

Superhydrophobic surfaces are of paramount importance for a great number of applications ranging from heat transfer to medicine. However, their mass production is challenging from environmental and scaling points of views. This work proposes a simple, scalable, production method for superhydrophobic surfaces and porous materials. In particular, highly hydrophobic CH2/CH3-grafted copper is achieved via exposure to a high-pressure supercritical CO2 + H2O environment. The hydrophobicity was further reinforced by using hierarchical macro-nanoporous copper prepared by a simple templating-annealing method reaching a water contact angle of ∼ 150°. The grafting is found to be durable in terms of ageing, abrasion and water impact. The superhydrophobic porous material is successfully used to separate oil emulsions from water. Molecular dynamics simulations are employed to investigate the underlying superhydrophobicity mechanisms further. We hypothesise that the obtained grafting results from a CO2 hydrogenation reaction. The proposed approach may pave the way for the mass use of superhydrophobic surfaces and porous materials for anti-corrosion, anti-icing, separation, batteries, sensors, electronic materials, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.