Abstract
Cotton fabric is commonly used in daily life, but it is easily wetted and contaminated by liquid. Herein, we present a simple and environmentally friendly plasma technology for hydrophobic modification of cotton fabric. In order to endow superhydrophobicity to cotton fabric, helium plasma inducing graft polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (D4Vi) was utilized to wrap SiO2 particles on cotton fabrics. Cotton fabrics were successively dipped in silica sol and D4Vi, then treated by plasma. Cotton fabrics before and after modification were characterized by using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. The experimental results showed that the cotton-SiO2-D4Vi consisted of nanoscale SiO2 protrusions and low-surface-energy film polymerized by D4Vi. In addition, the one wrapped SiO2 of 161 nm presented excellent hydrophobicity, washing durability, and repellency toward different types of liquids with a water contact angle of 152°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.