Abstract

The clay/polymeric matrices have much attention from researchers in bio-medical applications due to their numerous uses. This study introduces new orthopedic titanium (Ti) implant with increasing bio-activity by treating the surface of the Ti implant with bio-compatible composite coating. Wollastonite (WST) clay combined minerals (Mg2+and Gd3+) substituted hydroxyapatite (HAP)/Starch composite was prepared using in-situ co-precipitation method. It was successfully coated on the orthopedic grade Ti plate by the Electrophoretic Deposition (EPD) method. The functionality, phase, morphology, and bio-activity analysis of the composite were evaluated by FT-IR, XRD, HR-TEM, and SEM analysis, respectively. The mechanical property, i.e., Vickers microhardness value of the MHAP/Starch/WST composite coated Ti plate, showed 242 ± 1.92 Hv. The in-vitro MG-63 osteoblast cells viability, differentiation, and Ca mineralization of MHAP/Starch/WST composite suggests that this new implant will be used for bone regeneration application after careful evaluation of in-vivo and clinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call