Abstract
MnFe2O4@SiO2-NH2 magnetic nanocomposite (AFMNC) adsorbent with a particle size of ∼50 nm was successfully synthesized using a facile approach. The as-prepared composite particles showed a fast binding of Pt(IV) with easy magnetic solid-liquid separation. The kinetic data were fitted to both pseudo-first and second-order rate models, indicating that AFMNC exhibited a much higher rate of Pt(IV) binding (0.125 g mg-1 min-1) compared to that of commercial ion-exchange resin Amberjet 4200 (0.0002 g mg-1 min-1). The equilibrium adsorption data were fitted to the Langmuir isotherm model with a relatively high sorption capacity of 380 mg/g. Scanning transmission electron microscopy analysis demonstrated the presence of platinum chloride after sorption on AFMNC, suggesting an adsorbate-adsorbent anion-exchange interaction. In addition, due to its magnetic characteristics, AFMNC can be easily separated from the aqueous medium after the sorption process. The novel nanocomposite may facilitate recovery of Pt(IV) from waste solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.