Abstract

Metamaterials for the mid-infrared spectrum require subwavelength meta-structures with dimensions of a few hundreds of nanometers. Fabrication via fiber drawing is challenging as the Plateau–Rayleigh instability caused by interfacial surface tension between the liquid metal and the dielectric during the drawing leads to fluctuation of the structure, preventing drawing of uniform wire array structures with such dimensions. Here, conventional fiber drawing technique is employed in the fabrication of wire array metamaterial fibers containing tin wires embedded in soda–lime glass. Plateau–Rayleigh instabilities ensuing detrimental deformations on submicron metallic structures are minimized through the selection of materials with favorable rheological properties and the optimization of the drawing parameters. Uniform wire array structures with wire diameter and spacing as small as 143 and 286 nm, respectively, are demonstrated. The application of this established fabrication process represents a large-volume and low-cost alternative for the production of hyperbolic metamaterials. The new metamaterial fibers achieved open up a range of exciting applications at mid-infrared frequencies, such as lifetime engineering and super-resolution imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.