Abstract

Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call