Abstract
Introducing a groundbreaking solution, a room-temperature (RT, 25 °C) gas sensor addresses complexities in conventional sensors, promising enhanced performance. Synthesized through hydrothermal and thermal calcination processes, SnO2 hollow nanospheres (HNs) are integrated with In2O3 components to bolster sensing capabilities. The sensor detects triethylamine (TEA) gas upon UV light irradiation, owing to its unique surface properties and SnO2–SnO2 and SnO2–In2O3 homo- and heterojunctions. This results in unparalleled sensitivity to TEA gas (Ra/Rg = 34–100 ppm) and an exceptional limit of detection (3.98 ppt), attributed to photo-ionized O2− ions' heightened reactivity. The study proposes superior sensors backed by comprehensive analyses, demonstrating their performance improvements and underlying mechanisms. The optimized sensor design, based on In2O3-appended SnO2 HNs, presents exceptional selectivity, pattern recognition for low TEA gas concentrations, humidity resistance, and reliability under UV irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.