Abstract

Starch-based films have received considerable attention, owing to their commendable biocompatible and biodegradable properties; however, their poor ultraviolet (UV)-blocking and antibacterial performances limit their application in fruit preservation. Herein, bio-based bifunctional benzoxazine (Bi-BOZ) compounds with different carbon chain lengths were synthesized, and the influence of chain lengths on the antibacterial effect was explored. Benzoxazine with 1,12-dodecanediamine as the amine source (BOZ-DDA) exhibited excellent antibacterial and antibiofilm activities, with minimum inhibitory concentrations of 21.7 ± 2.2 and 23.3 ± 2.6 μg/mL against Escherichia coli and Staphylococcus aureus, respectively, mainly because the electrostatic attraction and hydrophobic effect of BOZ-DDA, effectively disrupted the bacterial integrity. DS/DDA films with hydrophobic, antibacterial, and UV-resistant abilities were prepared by the Schiff-base reaction between BOZ-DDA and dialdehyde starch (DS). The interactions between the films increased with BOZ-DDA content, enhanced mechanical and barrier properties. DS/DDA films exhibited acid-responsive antibacterial activity attributed to the acid hydrolysis of Schiff bases, released of BOZ-DDA from the films, and the protonation of BOZ-DDA. DS/DDA films exhibited commendable antibacterial and anti-ultraviolet characteristics compared to commercially available films, allowing them to prevent the degradation of mangoes and grapes. As sustainable antibacterial materials, the multifunctional DS/DDA films manifest promising prospects in fruit preservation packaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call