Abstract

We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to catalyze the C-C, C-O and C-N coupling structures, which is useful to prepare polymers, capsules and bulk hydrogels. We also tried to prepare the x-linked films by the catalysis of HRP. The comparison of the two methods suggests that the Ru(ii) complex method is more ideal for fabricating x-linked films. In addition, the photo-triggered chemical reaction within the films was confirmed by the solid-state (13)C NMR, XPS and FT-IR measurements. Without UV light irradiation or thermal treatment, this strategy brings many advantages. It is anticipated that this approach can be easily extended to the applications of the biological related fields in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call