Abstract
Well-defined gold nanoflower superhydrophobic surface (SHS) was constructed on iron foil by chemical deposition and anneal. The as-fabricated sample exerts excellent superhydrophobicity with water contact angle (WCA) up to 169°, a sliding angle of about 3°. The samples were characterized via scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and energy dispersive analysis of X-ray (EDX) to determine the morphology, structure and composition. The electrochemical measurements showed that the resultant surface displayed good corrosion resistance in 3.5 wt% sodium chloride aqueous solution. The effect of pH on the SHS and corrosion resistance ability of the samples at pH = 2, 7 and 9 were explored. The self-cleaning property of the SHS was analyzed. Also, the surface withstood abrasion by 400 grid SiC sandpaper for 2.0 m under 30 kPa, or water impacting for 120 min without losing its superhydrophobicity, indicating prominent mechanical durability. This successful manufacture of the gold SHS with anti-corrosion, self-cleaning, and mechanical durability can pave a prospective way for a variety of practical situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.