Abstract

We propose a new laser‐based fabrication process of small‐sized riblets on PWA1483 coated on a 3 μm‐thin sputtered Ni/Cr/Ni multilayer. Laser ablation was used for local material removal. Subsequent oxidation was used to provide an optimal riblet dimensions for a drug reduction and oxidation resistance. As a result of the heat treatment, a 7 μm oxide film was formed. The oxide film consists of two different oxide layers: while the upper one is formed of a dense Cr2O3 layer with NiO, Cr2NiO4, and TiO2 inclusions, the bottom one mainly consists of alpha‐Al2O3. Between the riblets, a TiO2 layer was formed on the top of Cr2O3 layer. First mechanical tests showed a promising riblet stability under the low‐cycle fatigue load, under tension, and under quasi‐cyclic bending load. The riblets also exhibit no severe failure by applying a quasi‐cyclic bending stress of 900 MPa for 200 times. Furthermore, cyclic tensile loading with a mean load of 500 MPa and an amplitude of 220 MPa corresponding to a strain range of 0.35% (stress level of R = 0.35) led to no damage of the riblet structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.