Abstract

A simple but effective approach is demonstrated for the fabrication of an array of La0.67Sr0.33MnO3−δ nanoconstriction via nanosphere lithography. Such nanoconstrictions can be treated as quasi-one-dimensional conductors. A monolayer of hexagonally arranged SiO2 microspheres, whose dimension was reduced by reactive ion etching, is employed as a mask for pulsed laser deposition. Nanoconstriction array of around 100nm could be obtained. Conventional photolithography and the lift-off technique were employed to shape the nanoconstriction array into the bridge geometry for transport property measurements. The results showed that the nanoconstriction array exhibited nonlinear transport properties different from those exhibited by continuous film. This approach opens the possibility of fabricating and studying nanopatterned multicomponent oxides which include magnetoresistive manganites, superconducting cuprates, and other perovskite oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.