Abstract
The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core–shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core–shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol–gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10−7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10−2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.
Highlights
Nanoparticles of semiconductor compounds such as CdS, CdSe, and CdTe exhibit unique fluorescent properties and are called quantum dots (QDs)
According to studies performed by several researchers (Kim et al 2009; Jiang et al 2012; Zhang et al 2013), silica particles produced by a sol–gel method using silicon alkoxide have an isoelectric point (IEP) of 2.0–4.0
This implied that the QD surface was covered with silica, which was supported by the transmission electron microscope (TEM) observations (Fig. 1b)
Summary
Nanoparticles of semiconductor compounds such as CdS, CdSe, and CdTe exhibit unique fluorescent properties and are called quantum dots (QDs). Their method uses a sol–gel reaction with silicone alkoxide and base catalyst in the presence of the QDs. Our research group has proposed an alternative method for producing QD/SiO2 particles (Kobayashi et al 2010a, b, 2012a, 2013a, 2015) and performed fluorescence imaging of mice tissues, into which the colloid nanoparticle solutions were injected (Kobayashi et al 2013a, 2015).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.