Abstract

In this study, the morphology, structure, and properties of three-component composite membrane including poly(vinylalcohol), cellulose nanocrystals, and nanosilver (PVA/CNC/Ag) fabricated by electrospinning method were presented. CNC, isolated from Nypa fruticans branches by a chemical method, was used as a membrane to synthesize Ag nanoparticles (CNC/Ag) by a simple heat treatment technique. The presence of Ag NPs on CNC and the antibacterial ability of CNC/Ag were verified by the disc diffusion method. The CNC/Ag material was then mixed with PVA and the electrospinning step was performed. The PVA/CNC/Ag membrane was characterized by methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and differential scanning calorimetry (DSC). The FESEM results demonstrated that PVA/CNC/Ag had an irregular fiber morphology, rough surface, and fibers with an average diameter of about 70 nm, larger than both PVA and PVA/CNC. DSC analysis indicated that the presence of CNC/Ag had a significant effect on the thermal properties of the PVA/CNC/Ag material. These initial results showed that it was necessary to further investigate the fabricating parameters of the electrospinning process to optimize the properties of the PVA/CNC/Ag materials in order to afford membranes with suitable properties for wound dressing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.