Abstract
Anode-supported proton conducting solid oxide fuel cells (SOFCs) were fabricated by using electrophoretic deposition (EPD) for the electrolyte film deposition. BaCe0.9Y0.1O3-δ (BCY10) thick films were deposited on NiO-BCY10 substrates. The influence of the EPD parameters on the microstructure and electrical properties of BCY10 thick films was investigated. The anode substrates and electrolyte deposits were co-sintered at 1550{degree sign}C for 2 h to obtain a dense electrolyte thick film, while keeping a suitable porosity in the anode. Innovative composites with La0.8Sr0.2Co0.8Fe0.2O3 (LSCF)-BaCe0.9Yb0.1O3-δ (10YbBC) composition were used as cathode materials. Prototype SOFCs were prepared by depositing the composite cathode on the co-sintered half cells. Fuel cell tests and electrochemical impedance spectroscopy (EIS) measurements were performed in the 550-700ºC temperature range. The maximum power density of 296 mW cm-2 was achieved at 700{degree sign}C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.