Abstract

Programmed phase defects, at desirably specified sizes and known locations, for EUV multilayer blanks were successfully fabricated by the following newly developed simple technique; depositing Cr film on a 6025 glass substrate or a Si wafer, generating Cr patterns of isolated lines and/or dots by EB lithography, and depositing Mo/Si multilayer of 40-bilayers by ion beam sputtering over the Cr patterns. Thereby, programmed bump defects were created on the multilayer surface over the Cr pattern at the bottom. The programmed defects were observed by TEM and AFM, of which images revealed behavior of the multilayer growth on the Cr patterns. The observed images show that height and full width at half maximum (FWHM) of the bump on the multilayer surface strongly depended on the Cr pattern in height and width, and also incident angle of the sputtered molecular flux to the substrate surface. The multilayer coating at near-normal (vertical) incidence provides a significant amount of smoothing near the Cr patterns. A bump phase defect of 2-nm height and 60-nm FWHM, as the result, was obtained on the multilayer surface using a 5-nm thick Cr pattern, which corresponded to a minimum killer defect for EUV lithography at 45-nm node. The multilayer blanks with the programmed phase defects can be effectively used as a standard for defect inspection tool development and defect printability study. This paper describes a simple fabrication process of the programmed phase defects on EUV multilayer blanks, evaluation results on the programmed phase defects, and growth behaviors of multilayer on various patterns (seed of the defects).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call