Abstract

Progesterone is a potent drug for synchronization of the estrus and ovulation cycles in bovine. At present, the estrus cycle of bovine is controlled by the insertion of progesterone-embedded silicone bands. The disadvantage of nondegradable polymer inserts is to require for disposal of these bands after their use. The study currently focuses on preparation of biodegradable progesterone-incorporated nanofiber for estrus synchronization. Three different concentrations (1.2, 1.9, and 2.5 g) of progesterone-impregnated nanofibers were fabricated using electrospinning. The spun membrane were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Uniform surface morphology, narrow size distribution, and interaction between progesterone and zein were confirmed by SEM. FTIR spectroscopy indicated miscibility and interaction between zein and progesterone. X-ray analysis indicated that the size of zein crystallites increased with progesterone content in nanofibers. Significant differences in thermal behavior of progesterone-impregnated nanofiber were observed by DSC. Cell viability studies of progesterone-loaded nanofiber were examined using MTT assay. In vitro release experiment is to identify the suitable progesterone concentration for estrus synchronization. This study confirms that progesterone-impregnated nanofibers are an ideal vehicle for progesterone delivery for estrus synchronization of bovines.

Highlights

  • Electrospinning is a technique used to form nanoscale fibers

  • The present study aims to investigate the release characteristics of progesteroneimpregnated zein nanofiber obtained by electrospinning process

  • The average size of fiber diameter ranged from 180 ± 12 to 278 ± 16 nm for 1.2 g progesteroneimpregnated zein nanofiber

Read more

Summary

Introduction

Electrospinning is a technique used to form nanoscale fibers. It is quite versatile for fabricating nanofibers from various synthetic or natural polymers [1]. In literature [2], reported functional electrospun nanofibrous composite structures can be produced by incorporating functional additives in the fiber matrix or on the fiber surface. The development of nanostructured systems for the delivery and sustained release of molecules towards specific targets represents a frontier area of nanoscience and nanotechnology, with the possibility of contributing substantially to advances in animal reproduction [3]. Improving delivery techniques that minimize toxicity of drug has a significant effect on its efficacy. Overall, nanosized delivery systems enhance the therapeutic efficacy of

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.